Combination of the Endogenous lhcsr1 Promoter and Codon Usage Optimization Boosts Protein Expression in the Moss Physcomitrella patens
نویسندگان
چکیده
The moss Physcomitrella patens is used both as an evo-devo model and biotechnological production system for metabolites and pharmaceuticals. Strong in vivo expression of genes of interest is important for production of recombinant proteins, e.g., selectable markers, fluorescent proteins, or enzymes. In this regard, the choice of the promoter sequence as well as codon usage optimization are two important inside factors to consider in order to obtain optimum protein accumulation level. To reliably quantify fluorescence, we transfected protoplasts with promoter:GFP fusion constructs and measured fluorescence intensity of living protoplasts in a plate reader system. We used the red fluorescent protein mCherry under 2x 35S promoter control as second reporter to normalize for different transfection efficiencies. We derived a novel endogenous promoter and compared deletion variants with exogenous promoters. We used different codon-adapted green fluorescent protein (GFP) genes to evaluate the influence of promoter choice and codon optimization on protein accumulation in P. patens, and show that the promoter of the gene of P. patens chlorophyll a/b binding protein lhcsr1 drives expression of GFP in protoplasts significantly (more than twofold) better than the commonly used 2x 35S promoter or the rice actin1 promoter. We identified a shortened 677 bp version of the lhcsr1 promoter that retains full activity in protoplasts. The codon optimized GFP yields significantly (more than twofold) stronger fluorescence signals and thus demonstrates that adjusting codon usage in P. patens can increase expression strength. In combination, new promotor and codon optimized GFP conveyed sixfold increased fluorescence signal.
منابع مشابه
Selfing in Haploid Plants and Efficacy of Selection: Codon Usage Bias in the Model Moss Physcomitrella patens
A long-term reduction in effective population size will lead to major shift in genome evolution. In particular, when effective population size is small, genetic drift becomes dominant over natural selection. The onset of self-fertilization is one evolutionary event considerably reducing effective size of populations. Theory predicts that this reduction should be more dramatic in organisms capab...
متن کاملQuantitative promoter analysis in Physcomitrella patens: a set of plant vectors activating gene expression within three orders of magnitude
BACKGROUND In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss Physcomitrella patens has become an exciting model system for studying plant molecular processes due to an exceptionally high rate of nuclear gene targeting by homologous recombination compared with other plants. However, its...
متن کاملMicrobial Cell Factories
Transgenic plants are promising alternatives for the production of recombinant pharmaceutical proteins (plant molecular farming). Plants as higher eukaryotes perform posttranslational modifications similar to those of mammalian cell lines. Low-cost cultivation and safe pathogenfree production are further advantages. However, field cultivation of transgenic plants raises social, environmental an...
متن کاملP-22: Codon Optimization of Coagulation Factor IX and Cloning in to The Chinese Hamster Ovary Cells
Background Human coagulation factor IX is a 57kDa plasma serine protease made in Liver which plays a vital role in the blood coagulation cascade. FIX deficiency causes severe disorder Hemophilia B or Christmas disease. Nowadays, recombinant proteins have important roles in treatment of diseases. Although, cultivated mammalian cells because of their ability for producing properly folded protein ...
متن کاملPhyscomitrella patens Activates Defense Responses against the Pathogen Colletotrichum gloeosporioides
The moss Physcomitrella patens is a suitable model plant to analyze the activation of defense mechanisms after pathogen assault. In this study, we show that Colletotrichum gloeosporioides isolated from symptomatic citrus fruit infects P. patens and cause disease symptoms evidenced by browning and maceration of tissues. After C. gloeosporioides infection, P. patens reinforces the cell wall by th...
متن کامل